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We present an elementary approach for the optimization of the elliptic coplanar coax-
ial Hohmann type transfer arising from the first principles. We assign the minimized
increments of velocities at peri—apse and apo–apse by equating to zero the gradient of
∆v1 + ∆v2 , then resolving a second degree algebraic equation in the variable x (the
ratio of the velocities before and after the initial impulse). We consider the four feasible
configurations, and we assign the most economic one. By setting e1 = 0, e2 = 0 for the
terminal orbits, we confront the original circular Hohmann transfer case promptly.
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1. Background

Orbit transfer is a major subject with regard to placing a spacecraft in an orbit
around the Earth. The velocity increments are directly proportional to motor sys-
tem thrusts of the rocket space vehicle. Consequently it is proportional to propellant
fuel consumption. It is most convenient to regard the transfer problem as a problem
of change of energy [1]. We utilize well known geometric properties of conic sections
and ordinary calculus. The main two types of orbit transfer are the Hohmann and
the Bi–Elliptic. For each type we face the coplanar and the non coplanar cases.
The criterion for optimality is the minimization of the characteristic velocity for
the maneuver [2], [3]. The literature of optimal transfer is and so on extensive, we
may recall the works by Prussing [3], Palmore [4], Edelbaum [5], Barrar [6], Marec
[7], Lawden [8], Hiller [9] and Altman and Pistiner [10]. It is established
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Figure 1 Apogee of transfer orbit coincides with apogee of final orbit (Initial impulse at perigee)

that the minimum total velocity increment solutions for specified trajectory end
point conditions, are attainable directly by methods of the differential calculus.

2. Method and Results

We begin by the first configuration for a two impulse Hohmann elliptic transfer of
a space vehicle (Fig. 1). We consider the following relationships:

I1 = ∆v1 = vA2 − vA1 = xvA1 − vA1 = (x− 1) vA1 (1)
I2 = ∆v2 = vB2 − vB1 (2)

vA2 =
√

µ(1+eT )
aT (1−eT ) vA1 =

√
µ(1+e1)
a1(1−e1)

vB2 =
√

µ(1−e2)
a2(1+e2)

vB1 =
√

µ(1−eT )
aT (1+eT )

(3)

where

x =
xvA1

vA1
=

velocityafterperi−−apseinitialimpulse

velocitybeforeperi−−apseinitilimpulse
x > 1

x =

√√√√
µ(1+eT )

aT (1−eT )

µ(1+e1)
a1(1−e1)

(4)

From the geometry of Fig. 1, we have

aT (1 + eT ) = a2 (1 + e2) (5)
aT (1− eT ) = a1 (1− e1) (6)
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From Eqs. (5), (6), we get

1− eT

1 + eT
=

a1 (1− e1)
a2 (1 + e2)

(7)

whence, from Eqs. (2), (7)

∆v2 =

√
µ (1− e2)
a2 (1 + e2)

−
√

µa1 (1− e1)
aT a2 (1 + e2)

(8)

From Eqs. (4), (7), we acquire

x =
√

1 + eT

1 + e1
> 1 (9)

i.e.
eT = x2 (1 + e1)− 1

From Eqs. (5), (6), we find

aT =
a1 (1− e1)

1− eT
=

a2 (1 + e2)
1 + eT

Whence

aT =
a1 (1− e1)

2− x2(1 + e1)
=

a2 (1 + e2)
x2(1 + e1)

(10)

We can easily derive

vB1 =

√
µ {2− x2 (1 + e1)}

a2 (1 + e2)

Therefore

∆v2 =

√
µ (1− e2)
a2 (1 + e2)

−
√

µ {2− x2 (1 + e1)}
a2 (1 + e2)

(11)

∆v1 =

√
µ (1 + e1)
a1 (1− e1)

(x− 1)

For the optimum condition:

d

dx
(∆vT ) =

d

dx
(∆v1) +

d

dx
(∆v2) = 0 (12)

Let
b1 = a1 (1− e1) b2 = a1 (1 + e1)
b3 = a2 (1− e2) b4 = a2 (1 + e2)

(13)
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Whence by differentiation w.r.t. the variable x

d

dx
(∆v1) =

√
µ (1 + e1)

b1
= vA1 (14)

d

dx
(∆v2) =

√
µ

b4

x (1 + e1)√
2− x2 (1 + e1)

(15)

i.e.√
µ (1 + e1)

b1
+

√
µ

b4

x (1 + e1)√
2− x2 (1 + e1)

= 0 (16)

After some reductions and rearrangements, we get

(x)Min = ±
√

2b4

(b1 + b4) (1 + e1)
(17)

Or in explicit form

(x)Min =

√
2a2 (1 + e2)

(1 + e1) {a1 (1− e1) + a2 (1 + e2)} (18)

By substitution in Eqs. (9), (10) for the value of (x)Min. Eq. (18), we get the
unique values for (aT , eT ), namely

(aT )Min =
1
2

[a1 (1− e1) + a2 (1 + e2)] (19)

(eT )Min =
−a1 (1− e1) + a2 (1 + e2)
a1 (1− e1) + a2 (1 + e2)

(20)

Which shows that the generalized Hohmann transfer is itself a minimum transfer
system.

Now we evaluate the minimum characteristic velocity (∆vT = ∆v1 + ∆v2)Min,
we have

∆vT =

√
µ (1 + e1)

b1
(x− 1) +

√
µ (1− e2)

b4
−

√
µ

b4
{2− x2 (1 + e1)} (21)

By substitution for x = (x)Min, we find that

(∆vT )Min =

√
2µb4

b1 (b1 + b4)
−

√
2µb1

b4 (b1 + b4)
+

√
µ (1− e2)

b4
−

√
µ (1 + e1)

b1
(22)

In terms of the b’s or explicitly in terms of the elements a, e

(∆vT )Min =

√
2µa2 (1 + e2)

a1 (1− e1) {a1 (1− e1) + a2 (1 + e2)} −
√

µ (1 + e1)
a1 (1− e1)

(23)

+

√
µ (1− e2)
a2 (1 + e2)

−
√

2µa1 (1− e1)
a2 (1 + e2) {a1 (1− e1) + a2 (1 + e2)}
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Figure 2 Apogee of transfer orbit coincides with perigee of final orbit (Initial impulse at perigee)

For the classical circular Hohmann transfer e1 = 0 and e2 = 0, whence we acquire
the quite symmetric formula

(∆vT )Min =
√

µ

a1

{√
2a2

a1 + a2
− 1

}
+

√
µ

a2

{
1−

√
2a1

a1 + a2

}
(24)

For the second configuration (Fig. 2), we have the following relationships:

a1 (1− e1) = aT (1− eT )
aT (1 + eT ) = a2 (1− e2)

vA1 =

√
µ (1 + e1)
a1 (1− e1)

vA2 =

√
µ (1 + eT )
aT (1− eT )

Let

x =
vA2

vA1
=

√
1 + eT

1 + e1
> 1

i.e.

eT = x2 (1 + e1)− 1
(25)

aT =
a1 (1− e1)

1− eT
=

a2 (1− e2)
1 + eT

From Eq. (13),

aT =
b1

1− eT
=

b3

1 + eT

Or
aT =

b1

2− x2 (1 + e1)
=

b3

x2 (1 + e1)
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Now

∆vA = vA2 − vA1 = xvA1 − vA1 = (x− 1) vA1

∆vA = (x− 1)

√
µ (1 + e1)

b1
(26)

vB1 =

√
µ (1− eT )
aT (1 + eT )

vB2 =

√
µ (1 + e2)
a2 (1− e2)

∆vB = vB2 − vB1 =

√
µ (1 + e2)

b3
−

√
µ {2− x2 (1 + e1)}

b3
(27)

Optimum condition is:

d

dx
(∆vT ) =

d

dx
(∆vA) +

d

dx
(∆vB) = 0

Then, from Eqs. (26), (27) we get

√
µ (1 + e1)

b1
+

√
µ

b3

x (1 + e1)√
2− x2 (1 + e1)

= 0

After some reductions, we obtain the value of (x)Min. on the form

(x)Min = ±
√

2b3

(1 + e1) (b1 + b3)

Finally
(∆vT )Min = (∆vA)Min + (∆vB)Min

(∆vT )Min =

√
2µb3

b1 (b1 + b3)
−

√
µ (1 + e1)

b1
+

√
µ (1 + e2)

b3
−

√
2µb1

b3 (b1 + b3)
(28)

Or explicitly in terms of the elements a, e:

(∆vT )Min =

√
2µa2 (1− e2)

a1 (1− e1) {a1 (1− e1) + a2 (1− e2)} −
√

µ (1 + e1)
a1 (1− e1)

(29)

+

√
µ (1 + e2)
a2 (1− e2)

−
√

2µa1 (1− e1)
a2 (1− e2) {a1 (1− e1) + a2 (1− e2)}
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Figure 3 Apogee of transfer orbit coincides with perigee of final orbit (Initial impulse at perigee)

For the third configuration (Fig.3), we have

a1 (1 + e1) = aT (1 + eT )
aT (1− eT ) = a2 (1− e2)

vA1 =

√
µ (1− e1)

b2
(30)

vA2 =

√
µ (1− eT )

b2

Let

x =
vA2

vA1
=

√
1− eT

1− e1
> 1

i.e.

eT = 1− x2 (1− e1) (31)

aT =
a1 (1 + e1)

1 + eT
=

a2 (1− e2)
1− eT

i.e.

aT =
b2

1 + eT
=

b3

1− eT
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aT =
b2

2− x2 (1− e1)
=

b3

x2 (1− e1)
∆vA = vA2 − vA1 = xvA1 − vA1 = (x− 1) vA1

∆vA = (x− 1)

√
µ (1− e1)

b2
(32)

vB1 =

√
µ (1 + eT )
aT (1− eT )

vB2 =

√
µ (1 + e2)
a2 (1− e2)

∆vB = vB2 − vB1 =

√
µ (1 + e2)

b3
−

√
µ {2− x2 (1− e1)}

b3
(33)

Optimum condition is:

d

dx
(∆vT ) =

d

dx
(∆vA) +

d

dx
(∆vB) = 0

Then from Eqs. (32), (33) we get
√

µ (1− e1)
b2

+
√

µ

b3

x (1− e1)√
2− x2 (1− e1)

= 0

After some simple algebraic reductions, we get

(x)Min = ±
√

2b3

(1− e1) (b2 + b3)

(∆vT )Min =

√
2µb3

b2 (b2 + b3)
−

√
µ (1− e1)

b2
+

√
µ (1 + e2)

b3
−

√
2µb2

b3 (b2 + b3)
(34)

Or explicitly,

(∆vT )Min =

√
2µa2 (1− e2)

a1 (1 + e1) {a1 (1 + e1) + a2 (1− e2)} −
√

µ (1− e1)
a1 (1 + e1)

(35)

+

√
µ (1 + e2)
a2 (1− e2)

−
√

2µa1 (1 + e1)
a2 (1− e2) {a1 (1 + e1) + a2 (1− e2)}

For the fourth configuration (Fig. 4), we have

a1 (1 + e1) = aT (1− eT ) aT (1 + eT ) = a2 (1 + e2)

vA1 =

√
µ (1− e1)

b2
vA2 =

√
µ (1 + eT )

b2
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Figure 4 Apogee of transfer orbit coincides with apogee of final orbit (Initial impulse at apogee)

x =
vA2

vA1
=

√
1 + eT

1− e1
> 1

i.e.
eT = x2 (1− e1)− 1 (36)

aT =
a1 (1 + e1)

1− eT
=

a2 (1 + e2)
1 + eT

aT =
b2

2− x2 (1− e1)
=

b4

x2 (1− e1)
∆vA = vA2 − vA1 = xvA1 − vA1 = (x− 1) vA1

∆vA = (x− 1)

√
µ (1− e1)

b2
(37)

vB1 =

√
µ (1− eT )

b4

vB2 =

√
µ (1− e2)

b4

∆vB = vB2 − vB1 =

√
µ (1− e2)

b4
−

√
µ {2− x2 (1− e1)}

b4
(38)

∆vT = ∆vA + ∆vB

Optimum condition is

d

dx
(∆vT ) =

d

dx
(∆vA) +

d

dx
(∆vB) = 0
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Then from Eqs. (37), (38) we get
√

µ (1− e1)
b2

+
√

µ

b4

x (1− e1)√
2− x2 (1− e1)

= 0

(x)Min = ±
√

2b4

(1− e1) (b2 + b4)

(∆vT )Min = (∆vA)Min + (∆vB)Min

Finally,

(∆vT )Min =

√
2µb4

b2 (b2 + b4)
−

√
µ (1− e1)

b2

(39)

+

√
µ (1− e2)

b4
−

√
2µb2

b4 (b2 + b4)

Or explicitly

(∆vT )Min =

√
2µa2 (1 + e2)

a1 (1 + e1) {a1 (1 + e1) + a2 (1 + e2)} −
√

µ (1− e1)
a1 (1 + e1)

(40)

+

√
µ (1− e2)
a2 (1 + e2)

−
√

2µa1 (1 + e1)
a2 (1 + e2) {a1 (1 + e1) + a2 (1 + e2)}

3. Numerical calculations

We consider the Earth – Mars Hohmann elliptic transfer to perform an approxima-
tive check for the validity of the above calculations. We have

a1 = 1 AU ; a2 = 1.5237 AU ; e1 = 0.0167 ; e2 = 0.0934
where subscript 1 refers to the Earth and subscript 2 refers to the Mars.
We have the following table for the four configurations:

Fig. (aT )Min (eT )Min (x)Min (∆vT )Min a2

1 1.3247 0.2577 1.1122 0.1843 1.5237
2 1.1823 0.1683 1.0720 0.1870 1.5236
3 1.1990 -0.1521 1.0824 0.1873 1.5237
4 1.3414 0.2420 1.1239 0.1850 1.5237

We note that (eT )Min for Fig. 3. is negative value, according to the sketch of
this figure and the Eq. (30).

We assume that a1, a2 the semi–major axes of the Earth and Mars are equal
to the mean distances of the two planets from the primary (the Sun). Evidently
(∆VT )Min of Fig. 1. is the most economic.
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4. Concluding Remarks

The choice of x as our variable leads to the most simple and exact formulate of
the problem. After the resolution of the second degree equation in x arising from
the optimum condition, we can determine the unique values (eT )Min, (aT )Min from
Eqs. (9), (10), (25),(31),(36) knowing the given values of a1, e1 , a2 , e2 of the initial
and final orbit. The minimum characteristic velocity ( ∆vT )Min Eqs. (22), (28),
(34), (39) are obviously expressed in terms of the initial and final orbital elements
(the major axes and the eccentricities a1, a2, e1, e2). The optimization procedure is
based on formulas stemming from first principles considerations. It is not a special
case arising from the general problem, when we assume non coplanar trajectories.
We verified the correctness of the approach by the assignment of the approximative
value of a2 (the semi major axis of the final orbit), from the formula

2a2 = {aT (1 + eT ) + a2(1− e2)}, for Fig. 1 and 4,
2a2 = {aT (1 + eT ) + a2(1 + e2)}, for Fig. 2
2a2 = {aT (1− eT ) + a2(1 + e2)}, for Fig. 3.
In this paper, we consider four feasible configurations for this transfer problem,

two of them are relevant to the peri–apse perpendicular initial impulse (Fig. 1. and
Fig. 2.), the other two are relevant to initial perpendicular apo–apse impulse (Fig.
3. and Fig. 4.).

This approach is new, elementary, and straightforward. It avoids many com-
plexities that appear in other works, thus it is advantageous for this particular
transfer problem, and it is a proof that the generalized Hohmann transfer is itself
a minimum orbit transfer system.
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Nomenclature
x ratio of velocities after and before initial impulse.
a1 semi–major axis of initial orbit.
a2 semi–major axis of final orbit.
e1 eccentricity of initial orbit.
e2 eccentricity of final orbit.
aT semi–major axis of transfer orbit.
eT eccentricity of transfer orbit.
vA1 peri–apse velocity in initial orbit at point A.
vA2 peri–apse velocity of transfer orbit at point A.
vB1 apo–apse velocity of transfer orbit at point B.
vB2 apo–apse velocity in final orbit at point B.
∆v1 increment of velocity at A.
∆v2 increment of velocity at B.
∆vT characteristic velocity.
µ constant of gravitation.


